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J .  Phys. A: Math. Gen. 20 (1987) 1239-1249. Printed in the U K  

Criteria for an optimum simulated annealing schedule for 
problems of the travelling salesman type 

Stephen Rees and Robin C Ball 
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, 
U K  

Received 20 May 1986 

Abstract. The simulated annealing algorithm for optimisation problems such as the travel- 
ling salesman problem is reviewed. The concept of the autocorrelation function for cost 
functions i s  introduced and it is shown how numerical experiments to measure this quantity 
can provide criteria as to how rapidly a system can be annealed close to equilibrium. From 
this we obtain an optimum annealing schedule of general applicability. 

1. Introduction: review of the method 

Simulated annealing has its origins in the work of Metropolis er a1 [ l ]  who invented 
a computational scheme for simulating a collection of physical particles in thermal 
equilibrium at some temperature T, for which the probability of finding the system in 
microstate i with energy Ei is given by the Boltzmann distribution 

They did this by generating on their computer a collection of particles with a 
random configuration and random momenta and calculating the energy of the ensemble. 

Random changes were then made to the coordinates of one of the particles and 
the new energy evaluated. They showed that a sufficient criteria for (1.1) to be obtained 
for long times was to accept the change unconditionally if it decreased the energy and 
with a probability 

P = e x p  (-AE/k,T) (1.2) 
if the energy was increased. 

To attain thermal equilibrium at lower temperatures it is best not to apply the 
Metropolis algorithm straight away at the temperature considered. Instead, one should 
attempt to simulate annealing, the process in which the system is cooled slowly, being 
allowed to approach thermal equilibrium at a given temperature before the temperature 
is lowered by some small amount. Slow cooling is particularly important in such 
systems as spin glasses [2] where the Hamiltonian has a large number of global and 
local minima. Cooling too quickly means that the disorder encountered at higher 
temperatures gets frozen in as the temperature is lowered, corresponding to the system 
sticking in a local minimum of the Hamiltoniar,. 

Kirkpatrick el a1 [3] pointed out that this simulated annealing algorithm could be 
applied to minimise any complicated function with numerous local and global minima. 
He termed such a general function the cost function and used as an example the 
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travelling salesman problem. This consists of finding the shortest route around a 
collection of points (‘cities’) on a two-dimensional grid, the route terminating at its 
starting point. The cost function is simply the length of the route 

(1.3) 

where P( i )  is some permutation of N cities and I., is a matrix of inter-city distances. 
To solve the problem exactly takes a time which grows factorially with N. 

2. The problem 

2.1. Deficiencies of the annealing algorithm 

Two further specifications must be added to the basic idea. The first is the set of 
random changes to be attempted or the ‘dynamics’ of the system. Clearly, the better 
one understands the nature of an individual problem, the more astutely these can be 
chosen. 

We deliberately chose a relatively ‘dumb’ form of change for our study to avoid 
the simplicity of the travelling salesman problem proving too much a special case. 
Similarly, we did not concentrate our attention on starting with a ‘greedy’ initial state, 
that is where the next city visited on the route is the closest. 

The second specification is that of the annealing schedule. 
Since Kirkpatrick a number of papers on simulated annealing have appeared [4-71. 

None of these however has addressed systematically the question of how fast the 
simulation should be ‘cooled’ and by how large steps the temperature may be dropped 
to optimise the configuration achieved with limited computer time. 

To get a feel for the problem at hand, consider figure 1. The lower curve represents 
the equilibrium curve we might expect to obtain by making an arbitrarily large number 
of alterations to the cost function at each temperature and making the temperature 
drops effectively infinitesimal. What happens in any practical simulated annealing 
schedule is that the cost function initially situated at point A finds itself at B when 

Temperature --+ 

Figure 1. Schematic of equilibrium cooling curve for glasses. 
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the temperature is dropped suddenly by a finite amount. Application of the Metropolis 
algorithm is meant to get it back into equilibrium at C. 

In the annealing of real glasses, the relaxation time 7 taken to fall from B to C at 
temperature T is governed by a phenomenological law variously known as the Vogel- 
Fulcher law, Doolittle’s equation or the WLF equation [8-lo]: 

7 = T,, exp [ A /  ( T - T,)] (2.1) 

for appropriate choices of the constants T ~ ,  A and T,,  the latter constant being known 
as the glass transition temperature. 

We wished first to establish an algorithm for measuring T in an annealing and 
hence the rate at which one can cool, remaining close to equilibrium. Further, we 
investigated whether it obeyed the form (2.1), in which case determining the parameters 
r0,  A and T, would suffice to design the annealing schedule. 

Figure 2. Depiction of ‘two-bond’ move employed in the annealing schedule. Route ABCD 
goes to ACBD. 
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Figure 3. Cooling curves for salesman problem over 50 temperature steps for various 
cooling rates. The leftmost number is the number of changes made to the cost function 
per temperature. The right-hand number is the number of runs made for averaging purposes. 
Cost function is measured in units of cost/city. (In descending order, the labels for the 
curves are: 1 x 80000, 2 x 40000, 3 x 20000, 5 x 16000, 6 x 13000, 7 x 10000, 8 x 10000, 30 x 
2500, 50 x 1500, 80 x 1000, 100 x 800, 300 x 200, 800 x 100, 1000 x 80, 10000 x 8, 80000 x 1. 
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In figure 1, the two upper curves represent the average energy of the glass for faster 
cooling rates. The quicker one cools the glass the higher the energy at which it finally 
levels off becomes. 

If an equation analogous to (2.1) held for annealing the salesman problem then 
we might expect to obtain cooling curves as in figure 1 for this problem also. 

2.2. Cooling curves 

The set up for our travelling salesman problem was as follows. 100 cities were 
distributed randomly on a flat surface whose X and Y ranges both stretched from 
-10 to 10 units. The coordinates were otherwise completely urestricted real numbers. 
An inter-city distance look-up table was formed to provide quick and easy reference 
to the Euclidean distance between any two cities. 

Making lots of random changes to the cost function we found the average change. 
This would be equivalent to the average change at infinite temperature when all moves 
would be accepted. A change consisted of the ‘two-bond move’ depicted in figure 2. 
This average change was about 10 units and since the Boltzmann factor k, was set to 
1 a suitable choice or starting temperature was T >> 10 and we took T = 100. 

Cooling curves for this problem are shown in figure 3. In each case the temperature 
was lowered through 50 decrements of 20%, for various number of attempted moves 
per decrement. Averaging was taken over repetitions with different random initial 
routes but the same set of city locations. 

The cooling curves do have a structure similar to those of glasses, the slower cooling 
rate curves levelling off at a lower valued final cost function than those for faster cooling. 

3. Relaxation times 

3.1. Autocorrelation functions and power spectra 

To obtain relaxation times we considered the thermal equilibrium autocorrelation 
function defined by 

( C ( t , ) C ( t ,  + t ) )  = A+ BF( t )  (3.1) 

where C (  t l )  is the time-dependent cost function, the average being taken over all t ,  . 
One can show that if F is normalised such that 

F ( 0 )  = 1 (3.2) 

then A and B are given by 

A = ( C ( t l ) ) 2  (3.3a) 

B = (C’( r l ) ) - ( C ( t l ) ) *  = U*(  T ) .  (3.3b) 

We make the assumption that the time averages can be replaced by averages over 
an ensemble of repetitiom of the simulation, taken at some particular time t = 0, and 
further we can write the autocorrelation function in terms of deviations from the 
equilibrium average AC, 

(AC,(O) A C , ( f ) ) i = ~ ’ ( T ) F ( t ) .  (3.4) 
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At large times, AC(0) and AC(r) will be unrelated so that the ensemble average 
will be zero. Thus the autocorrelation function decays and one may be tempted to write 

(ACj(0) ACi(t)); = a2( T )  exp ( - t / T (  T ) )  (3.5) 
although there is, of course, no a priori reason for assuming that the decay is simple 
exponential. The well known fluctuation dissipation theorem indicates that the time 
dependence of the fluctuations which we impose is the same as the time dependence 
of thermal fluctuations. 

n e  power spectrum of the cost function C ( t )  is given by 

P ( w )  = Re (C(t,)C(t, + t ) )  exp ( i d )  d t  (3.6) I 
and in the simplest case of equation (3.5) we would have at a particular temperature 

a 2 ( ~ ) / P ( w )  = w 2 7 +  I / T .  (3.7) 

We make the more general assumption that the time-dependent part of the autocorre- 
lation function, f( t ) ,  can be written as a sum over exponentials 

F(  t )  = A( T ~ )  exp ( - t / T , )  dT1. (3.8) 

If this assumption holds and we calculate the gradient and intercept of a general 

I 
I /  P against w 2  curve close to w = 0, we obtain 

1 - 1  

w - 0  l imL=( /  P ( w )  A ( T ~ ) ~ , ~ T ~ )  =- (TI) (3.9) 

(3.10) 

Each of these measures, in some sense, give the overall relaxation time for the 
problem. The gradient measure gives more bias towards the longer time components 
of the process. 

3.2. Numerical experiments to obtain relaxation times 

In order to take power spectra from a time sequence of data, it is necessary in the 
initial instance to start with cost function which is in thermal equilibrium. To do this 
we assume that the lower curve in figure 3 represents a sequence of equilibrium states. 
Thus an annealing was repeated as in P 2.2 for the cooling rate corresponding to the 
lower curve and the complete route or microstate recorded at the end of each tem- 
perature step. Twenty of the states sampled at various points over the range T = 100 
to T=O were then used for analysis as below. 

The Metropolis algorithm was applied to each sample in turn at the relevant 
temperature and the value of the cost function monitored as a function of time. One 
does not expect significant correlations in the changes of cost function over less than 
1 ‘sweep’ or 1 attempted change per city, so we adopted 1 sweep as our unit of time. 

Every time unit the value of the cost function was recorded until we had 1024 
values whose power spectrum was then computed from the Fourier transform of the 
time sequence data. In order to get reasonable statistics, the process was repeated 50 
times for each temperature and the average of the power spectra obtained. An example 
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of such an average power spectrum is shown in figure 4. In figure 5 ,  a plot of 1/P 
against w 2  is shown for a temperature T = 80 and T = 10. All power spectra have been 
normalised by v2. 

Even with the averaging, there is still too much noise associated with the data for 
accurate measurement of either gradient of intercept, so various smoothing operations 
were performed. A smoothed version of the 1/P against w 2  curve, henceforth called 

5t 
i 

I 
0 0 2  0 4  0 6  0 8  10 

Figure 4. A power spectrum obtained at temperature T = 80. 
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Figure 5. l/power plotted against frequency squared for temperature 80 (upper curve) 
and 10 (lower curve). 
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0 0 2  0 4  06 0 8  1 
(Frequency I ' 

Figure 6. Binned reciprocal power integral plotted against frequency squared for tem- 
peratures 80 (upper curve) and 10 (lower curve). The inset shows the T = 80 cure expanded 
in the region (0, 0.03). 

a reciprocal power integral, was defined according to the formula 

(3.11) 

This introduces accumulation of the data whilst still being dominated by the 
frequency of interest, since l / P ( w )  increases with w. 

The noise associated with the region of interest, the low frequency region, was still 
unacceptable so S ( w )  was further refined by a binning procedure whereby the average 
of 10 consecutive values of S ( w )  was found to yield a new variable S , ( w )  defined by 

(3.12) 

One can easily show that S l ( w )  close to w = 0 still has a gradient and intercept 
given by equations (3.9) and (3.10) to within appropriate numerical factors. 

Figure 6 shows, superimposed, the binned functions S , ( w )  obtained for tem- 
peratures T = 80 and T = 10. The inset shows the binned function S , ( w )  in  the range 
w 2  = (0,0.03) for temperature T =  80 providing an example of the data we used for 
measuring gradients and intercepts. 

4. Results 

The results which we obtained for the relaxation times derived respectively from 
measuring the intercept and gradient are shown in figures 7(a)  and ( b ) ,  displayed on 
an Arrenhius plot. 
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Figure 7. An Arrenhius plot of In (relaxation time) against reciprocal temperature, ( a )  
obtained from intercept and ( b )  gradient measurements, respectively. 

Generally, we can write an expression for T as 

7 = T~ exp (A (  T)/ T) (4.1) 

where A( T) is the temperature-dependent activation energy. 
One can see from the plots that in the high-temperature regime A is independent 

of temperature which one would expect even if a Vogel-Fulcher law held. Vogel- 
Fulcher behaviour, however, would result in the curve bending away from linear 
behaviour and tending towards infinity as the glass transition temperature is 
approached. However, close to Tg, the divergence of the relaxation time would imply 
that a prohibitively large amount of CPU time would need to be used to produce an 
equilibrium microstate of the cost function. One can see from the lower cooling curve 
in figure 3, which depicts the sample we assumed to be in equilibrium, that it is in the 
region below about T = 5 that the cost function begins to quench out corresponding 
to thermal equilibrium being lost. This corresponds to the region on the Arrenhius 
plots at which the relaxation time begins to level out. 

One is tempted to imagine that the single points labelled by arrows on the Arrenhius 
plots represent the initial stages of approach towards a glass transition. However, we 
do not believe that we have sufficient evidence to claim that a Vogel-Fulcher law is 
obeyed for this problem. 

We assume that the behaviour is Arrenhius and measurements conducted on the 
linear portions of the plots give expressions for the relaxation time for the intercept 
and gradient measures, respectively, as being 

T =  (2.46k0.04) exF [(6.85* 1.05)/T] 

T = (0.809*0.003) exp [(7.91*0.59)/ TI. 

Note that the activation energies agree within error bars. 

5. An optimum annealing schedule 

We took 

T = 2.5 e" T. 

( 4 . 2 ~ )  

(4.2b) 

(5.1) 
If our philosophy is correct then to accomplish an optimum annealing schedule, 

we apply the Metropolis algorithm at temperature T for a number of sweeps T before 
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the next temperature drop is made. There is a problem, however, about the size of 
the temperature drops. Reference to equation (3.4) shows that T is the time required 
for the time-dependent part of the autocorrelation function to decay from a ' ( T )  to 
around zero. Using the formula for the specific heat 

(5.2) 

we can, assuming that the temperature drop AT is small and the corresponding change 
in the mean cost a( T - A T )  is almost equal to U (  T ) ,  derive an expression for AT as 

A T  = T ' / ~ (  T ) .  (5.3) 

However, particularly at high temperatures when fluctuations in the cost are likely 
to be large, the assumpton of AT being small is not a valid one. An alternative way 
to use the relaxation time to optimise the CPU time is to cool continuously according 
to the formula 

E T  
ST=- 

r (  T )  " (5.4) 

for a suitable choice of E and St = 1 sweep. Thus, the system is given a time 7 to 
respond to the temperature dropping by a constant fraction E.  

We did various annealings to determine how this strategy compared with other 
types of annealing schedule. In each of the schemes considered, the annealing was to 
take in a total of 4 x  lo5 changes and results obtained from averaging over 10 runs. 

In the first set of annealings, the temperature was dropped according to the formula 

T" = XrTn-I ( 5 . 5 )  

for various values of Xr, the changes being divided equally between the temperatures. 
In the second set, the temperature was simply lowered by a constant decrement, D :  

(5.6) 
the changes again being equally spread between the temperatures. 

Thirdly, the scheme outlined in equation (5.4), henceforth termed continuous 
cooling', was tried for various values of E.  

Values of the final cost function Cf obtained together with the final temperature 
Tf are shown in table 1. One can see that for appropriate choice of the parameters 
Xr, 0, E all methods reach a final value of around 4.7. This fact, coupled with the 
evidence of the cooling curves (figure 3) suggests that the global minimum of the cost 
function is around 4.7. To determine the efficiency or otherwise of continuous cooling 
as an annealing schedule, it was necessary to determine after what proportion of the 
400 000 moves the global minimum was attained. Table 2 shows the proportion of the 
moves needed for the cost function to get below a value of 5. Note that we are 
considering the number of moves for the cost function to get below 5 on average. 
Thus, although in principle it is possible for the average cost function to move off into 
less favourable parts of the phase space after this value is achieved, it in fact does not 
do so. Continuous cooling with E = & achieves this most quickly. 

In a practical annealing schedule one cannot evaluate the expression for T using 
the detailed methods outlined in this paper. Ideally one would like to be able to 
calculate a running estimate of T quickly as the annealing proceeds. We can in principle 
do this at any time using past values of the cost function. From the formalism in 0 3, 
one can show that 

T,, = T,-I - D 
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Table 1. Table showing final value of cost function and temperature for various annealing 
schedules. Each result is taken from an average of 10 runs of 400 000 moves. 

Schedule 

1 xl- 0.95 0.9 0.8 0.7 0.6 

T,, = XTT,,-l cr 7.47 4.78 5.01 5.04 5.56 
Tf 8.10 0.57 0.00 0.00 0.00 

2 D 1 2 3 8 16 

T,, = T,,-, - D CF 4.74 5.05 4.85 6.11 6.16 
Tf 0.00 0.00 0.00 4.00 4.00 

3 l i e  1 5 10 50 100 1000 10000 

€T,,-l c, 6.36 5.62 5.39 4.74 4.69 9.04 9.91 
dT9t-i) T, 0.74 0.92 1.03 1.46 1.95 24.01 82.93 

T,, = T,, - I - - 

Table 2. The proportion of 400 000 moves required for the average cost over 10 repetitions 
to get below C, = 5 for each of the best annealing schedules in table 1 .  

Method 1 2 3 3 
,yr = 0.9 D =  1 E = 1/50 E = 1/100 

Proportion of moves to reach global minimum 0.76 0.98 0.39 0.57 

where the time period a must be at least of the order of T. 
However, since the various moments in this expression are meant to be calculated 

from a sequence of cost functions sampled at  one temperature and  yet we change the 
temperature every time a new cost function is recorded, equation (5.7) is not of much 
use in practice. 

A number of schemes can be devised in which equation (5.7) can be used to estimate 
T from cost functions sampled across a range of temperatures but we have not attempted 
to implement any of these. 

6. Conclusion 

We have shown that for the process of simulated annealing of a travelling salesman 
cost function, the relaxation time as a function of temperature can be measured and  
is given, within our resolution, by an  Arrenhius type law. We have shown that we can 
utilise this relaxation time to devise an annealing schedule in which the time for the 
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global minimum to be reached is smaller than in previously used ad hoc methods by 
a factor of two in one case study. 
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